近年来,研究发现工业循环水系统水泵耗电能方面存在较大的浪废现象,一方面设计系统及后期运行阶段,输水泵的设计或实际压力远高于系统正常需求;另一方面因部分循环水系统用户(水冷器)定置位置较高,造成系统供水压力较高,回水压力富袷能量较大。如能正确核算循环水系统需电量、充分利用输水泵的动能,或针对系统状况,充分利用回水富裕动能,对循环水单位电力消耗等指标的有效下降、系统能耗的有效降低有较大意义。
经理论论证及实践经验表明:对工业循环冷却水系统,先进行水泵改造以降低循环水送水扬程,在此基础上若回水系统仍有一定的富余能量,则进行水轮机替代电机等方式节能改造,是较为理想的节能途径。
2.1循环水泵优化
工业循环冷却水系统的冷换热备位差高低叁差不齐,而在循环水泵的扬程设计中,为确保冷换热备的用水需求,一般水泵会设计有高于实际需求约30%左右的富裕水头。因此在循环水系统中,水泵出口阀或冷却塔上水阀关闭现象层出不穷,该现场存在并不是人们通常理解的进行凉水塔系统切换或压力平衡需求,更主要是消耗部分回水动能,以免回水压力过高冲坏喷嘴或填料的因素。
在进行循环水泵降低扬程改造设计中,要将最高水位点和最大换热器损失定位系统最不利点进行计算和校核,同时为保证系统的安全生产,一般建议保留5-15%的安全裕量,对循环水泵进行优化改造。
目前,比较常用的水泵节能优化方法有变频、整体更换高效水泵、
高效叶轮更新、切削叶轮、进行关键配件改造等。实际操作中,应从投资、改造时间、改造效果多方面比较,如果条件允许,运行周期长的水泵建议优先采用更体更换高效泵,其次是进行三元流叶轮更新等形式。
2.2 水轮风机改造
在完成了循环水泵的节能改造后,若回水富余的动能提供一定的功率要求,驱动水轮机带动冷却塔风机产生满足生产需求的风量,则可进行水轮风机替代电动风机改造。
循环水系统中水轮机的工作过程:循环水系统回水由水轮机进水口进入切击叶轮,使叶轮带动叶片旋转,水流在出水区域缓释,最后经出水口流出,流至下接的布水管中。水由布水管分配后经喷嘴流出,经填料等区域与空气换热后汇入集水池。水轮机主要工作部件是叶轮,叶轮接受了流体的能量后进行旋转。旋转叶片之间水流有自由表面,转轮前后水流压差是主要动能。
水轮机按工作原理可分为冲击式水轮机和反击式水轮机两大类。冲击式水轮机的转轮受到水流的冲击而旋转,工作过程中水流的压力不变,主要是动能的转换;其主要分为水斗式、斜击式和双击式等,冲击式水轮机工作效率较低,应用效果不佳。
反击式水轮机的转轮在水中受到水流的反作用力而旋转,工作过程中水流的压力能和动能均有改变,但主要是压力能的转换。转轮主要利用转轮前后的压差,其主要分为轴流式、混流式、斜流式等,现在用于冷却塔改造的水轮机基本上为混流式。混流式水轮机效率较高,最佳工作点效率达到95%,但要达到其最高效率点工作比较难。
瑞泽能源是一家专注节能环保产业的高新技术企业,拥有自主知识产权的“5S”流体输送系统高效节能技术、电能质量优化节电技术、循环水零排放技术,在水泵节能、风机节能、空压机系统节能、供水系统节能、循环水系统节能、中央空调系统节能、电机系统节能、配电系统节能和循环水水处理等领域得到广泛应用,公司依托三元流技术设计的三元流叶轮,用于水泵、风机、离心式空压机的节能改造,技术应用可靠,业绩优良。